## **Authorship Attribution**



TECHNISCHE UNIVERSITÄT DARMSTADT

### **English for Computer Science II**

Oren Halvani, Wu Ding



## Overview



- Motivation
- How does it work?
- Take-Home-Messages
- Discussion
- References





• In this day and age there is an incredible amount of information worldwide

Quote [1]:

"The Amount of Digital Information Reached 281 Exabytes (281 Billion Gigabytes)".

• Rough estimate: ~ 85% of these are available in a textual representation





- As far as we know there are ~ 7.000.000.000 humans on earth
- From this it follows that there must be many (different) authors, who have produced these textual information !
- Sometimes it is not clear **which** author wrote a specific text
- In order to determine an author of an unknown text, so-called "authorship attribution methods" might be helpful
- These methods offer a wide range of applications...





### **Applications:**

- Plagiarism detection (remember the Guttenberg Affair ?)
- Forensic evidence in court (verifing confessions)
- Unmasking pseudonymous authors (e.g. in terror extremist blogs)
- Finding additional material of the same author
- Categorization of texts by authors (e.g. in unstructured text collections)
- And many more...





- Authorship Attribution is an extensively researched topic
- Researchers claim: task is not far from being solved

(...for some scenarios)

### Quote [2]:

"Trying to classify an unseen text as being written by one of two or of a few authors is a relatively simple task, which in most cases can be solved with high reliability and accuracies over 95%".





- But, how is it actually possible to recognize **who** wrote a given text?
- Dozens of techniques have been proposed to answer this question...
- Due to a lack of time, we will focus only on one 😳





Profile-based approach ( proposed in: [5] )

- Assume we have a document collection:  $\mathbf{D} = \{ D_1, D_2, D_3, \dots \}$
- That have been produced by several authors:  $A = \{ A_1, A_2, A_3, \dots \}$
- Merge both into clusters:  $\mathbf{C} = \{ (A_1, D_3), (A_2, D_4, D_5), (A_3, D_7, D_8, D_{12}), \dots \}$







Profile-based approach ( proposed in: [5] )

• Build for each document cluster  $C_i$  one big textfile  $T_i$ 







### **Profile-based approach:**

- What is the reason we should do that?
- Imagine we collect from an author A<sub>1</sub> documents like: private e-Mails, scientific papers, blogs, reports, ...
- Merging these texts will lead to an abstraction of style variation
- Specific style patterns of  $A_1$  remain in  $T_i$  (the big textfile)
- We need a modell to find these patterns...











- Sounds simple? Let's have a look behind the scenes...
- If we want to discriminate authors (represented thorugh  ${\bf T}_{\rm i}$ ) we first must understand how to distinguish their style
- Bad news  $\rightarrow$  there is no definition for style  $\bigodot$
- However, style can be approximated through a combination of various **features**
  - vocabulary richness
  - average word/sentence length
  - number of specific symbols (-.:,#?!'&)
  - number of: adjectives, nouns, verbs, …

...





 $\mathbf{F_{i}} = \begin{bmatrix} 7 \\ 54 \\ 109 \\ ... \end{bmatrix}$ 

23

- What we have so far:  $\mathbf{T}_1, \mathbf{T}_2, \mathbf{T}_3, \dots$
- Applying feature extraction on the  $\mathbf{T}_{\mathbf{i}}$  will result in the so-called feature vectors:

- Task of the model: find the most similar  ${\bf F}_{\rm i}$  in comparsion to the features of the unknown text document
- most similar = shortest distance (e.g. in a vector space...)



## **TECHNISCHE Recap: Linear Algebra** UNIVERSITÄT DARMSTADT **F**<sub>2</sub> The unknown 3 text = U ß ×Х



## **Recap: Linear Algebra**



- The angle  $\boldsymbol{\beta}$  represents similarity between 2 vectors
- Can be computed as fallows:

$$\cos(\boldsymbol{\beta}) = \frac{\mathbf{F}_{i} * \mathbf{U}}{\|\mathbf{F}_{i}\| * \|\mathbf{U}\|}$$

• Standardized resulting number is between: [0;1]





## **Recap: Linear Algebra**



• Besides the cosine similarity many other "metrics" are typically used



• All of these metrics share the same idea:

 $\rightarrow$  Figure out if two vectors correlate with each other !



### **Take-Home-Messages**



### **Authorship Attribution:**

... is no longer a utopian vision !

... is useful in many scenarios beyond Computer Science !

... is something that could affect you too (hopefully not)



## **Thanks for your attention !**

















# Your turn ;-)



- A couple of features have been mentioned during the presentation, can you think of additional features?
- Do you think that symbol-related features (number of hyphens, commas, etc.) are useful to discriminate the style of authors?
- Imagine we have 1000 features to train the modell, how should we handle less useful features without discarding them?
- Name at least one application where you could use Authorship Attribution for your own purpose



## References



### [1] "The Amount of Digital Information",

http://www.infoniac.com/hi-tech/amount-digital-information-reached-281-exabytes.html [Accessed on: 09.06.2011]

#### [2] "Authorship Attribution and Verification with Many Authors and Limited Data",

Kim Luyckx and Walter Daelemans, CNTS Language Technology Group, University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium.

http://www.aclweb.org/anthology/C/C08/C08-1065.pdf

[Accessed on: 09.06.2011]

#### [3] "CARTOON NETWORK and the logo are trademarks of and © 2011 Cartoon Network. A Time Warner Company. All Rights Reserved."



## References



### [4] "Questions picture: photo of "Le Penseur",

A bronze sculpture made by <u>Auguste Rodin</u>, held in the <u>Musée Rodin</u> in Paris, France.

#### [5] "A Survey of Modern Authorship Attribution Methods",

Efstathios Stamatatos, Dept. of Information and Communication Systems Eng. University of the Aegean, Karlovassi, Samos – 83200, Greece .

http://www.icsd.aegean.gr/lecturers/stamatatos/papers/survey.pdf

[Accessed on: 09.06.2011]

